Proof That Continuous Function With Finitely Many Discontinuities is Riemann Integral
You should upgrade or use an alternative browser.
- Forums
- Mathematics
- Calculus
Riemann integrability with a discontinuity
- I
- Thread starter Kolika28
- Start date
- Summary
- Given
##f(x) =
\begin{cases}
5 & \quad \text{if } x \text{ <3}\\
7 & \quad \text{if } x \geq3
\end{cases}##with partitioning ##Pn=[0,3−\frac{1}{n},3+\frac{1}{n},4]## where n∈N and ##I=[0,4]##.
Is the function integrable on I?
##U(f,P_n)-L(f,P_n)<\epsilon ##
So I find ##U(f,P_n## and ##L(f,P_n##
##L(f,P_n)=5(3-\frac{1}{n}-0)+5(3+\frac{1}{n}-(3-\frac{1}{n}))+7(4-(3+\frac{1}{n}))=22-\frac{2}{n} ##
##U(f,P_n)=5(3-\frac{1}{n}-0)+7(3+\frac{1}{n}-(3-\frac{1}{n}))+7(4-(3+\frac{1}{n}))=22+\frac{2}{n}##
Then ##U(f,P_n)-L(f,P_n)=\frac{4}{n} ##
So I'm struggeling to see if this fraction is less than epsilon or not. The "n" is confussing me. I have done similar tasks, but then I was given a fixed partition expressed with epsilon in the text. Some of my fellow students have tried to explain, but I still don't understand. Does someone have a good explanation?
Answers and Replies
The theorem says the following;
A function##f## defined and bounded in ##[a,b]## is integrable in ##[a,b]## iff ##\forall \varepsilon >0, \exists \Pi## such that ##U(f, \Pi)-L(f, \Pi)<\varepsilon## where ##\Pi## is a partition.
You now have a set of partitions ##P_n## and you have shown that for all of them ##U(f, P_n)-L(f,P_n)=\frac{4}{n}##. Now it's the same as proving the limit of a function. You must prove that, no matter what is the value of ##\varepsilon## you can find a value of ##n## such that $$\frac{4}{n}<\varepsilon$$
Okay, I see. So the goal is to prove that there exist a set of partitions that makes this statement true? And then as a result of this, the graph will be integrable on the interval? So it will not be true for every partition? But how do I find this value of ##n## such that ##\frac{4}{n}<\varepsilon##Well, I think your problem is that you don't know what ##\varepsilon## is?
The theorem says the following;
A function##f## defined and bounded in ##[a,b]## is integrable in ##[a,b]## iff ##\forall \varepsilon >0, \exists \Pi## such that ##U(f, \Pi)-L(f, \Pi)<\varepsilon## where ##\Pi## is a partition.You now have a set of partitions ##P_n## and you have shown that for all of them ##U(f, P_n)-L(f,P_n)=\frac{4}{n}##. Now it's the same as proving the limit of a function. You must prove that, no matter what is the value of ##\varepsilon## you can find a value of ##n## such that $$\frac{4}{n}<\varepsilon$$
Is it just to say that ##n>\frac{4}{\epsilon} ## ???
Exact, I like to imagine this as a game, I say an arbitrary value of ##\varepsilon## (for example, 0.7, 0.04 and 0.0035) and you must find a value of ##n## that fulfils the inequality $$\frac{4}{n}<\varepsilon$$In these cases, you can say, for example, n=(6, 287 and 1 151).Okay, I see. So the goal is to prove that there exist a set of partitions that makes this statement true? And then as a result of this, the graph will be integrable on the interval? So it will not be true for every partition? But how do I find this value of ##n## such that ##\frac{4}{n}<\varepsilon##
Is it just to say that ##n>\frac{4}{\epsilon} ## ???
But yes essentially you see that doesn't matter what value of ##\varepsilon## I take, any value $$n>\frac{4}{\varepsilon}$$ will fulfil the condition. @Math_QED has given a more formal argument of why you can always find such a number ##n##.
Okay, so I can just state that the function is integrable on ##I=[0,4]## by this conclusion? I'm just currious, if I was given a function where the partition ##P_n## was given like in this task (depending on ##n##), but the graph was not integrable on an interval ##[a,b]##. How could I observe that? Would we not do the operation on the inequality like we did, and find an expression for ##n## also?Exact, I like to imagine this as a game, I say an arbitrary value of ##\varepsilon## (for example, 0.7, 0.04 and 0.0035) and you must find a value of ##n## that fulfils the inequality $$\frac{4}{n}<\varepsilon$$In these cases, you can say, for example, n=(6, 287 and 1 151).
But yes essentially you see that doesn't matter what value of ##\varepsilon## I take, any value $$n>\frac{4}{\varepsilon}$$ will fulfil the condition. @Math_QED has given a more formal argument of why you can always find such a number ##n##.
$$f(x)=\begin{cases}1 & \text{ if } x\in \mathbb{Q}\cap[0,1] \\ 0 & \text{ if } \in \bar{\mathbb{Q}}\cap[0,1]\end{cases}$$where ##\bar{\mathbb{Q}}## are the irrational numbers. Then knowing that between any two rational numbers, there is a irrational number and that, between two irrational numbers there is a rational number. You can easily see that, for any partition you look
$$U(f, P_n)=1, \qquad L(f,P_n)=0$$
so for this equation to be integrable you need that ##\forall \varepsilon##, ##\exists n## such that
$$U(f,P_n)-L(f,P_n)=1 < \varepsilon$$So, if in this case I give you ##\varepsilon=0.5##, try to find any partition fulfiling this condition.
Well, I think that the typical example is the following, imagine the function
$$f(x)=\begin{cases}1 & \text{ if } x\in \mathbb{Q}\cap[0,1] \\ 0 & \text{ if } \in \bar{\mathbb{Q}}\cap[0,1]\end{cases}$$where ##\bar{\mathbb{Q}}## are the irrational numbers. Then knowing that between any two rational numbers, there is a irrational number and that, between two irrational numbers there is a rational number. You can easily see that, for any partition you look
$$U(f, P_n)=1, \qquad L(f,P_n)=0$$
so for this equation to be integrable you need that ##\forall \varepsilon##, ##\exists n## such that
$$U(f,P_n)-L(f,P_n)=1 < \varepsilon$$So, if in this case I give you ##\varepsilon=0.5##, try to find any partition fulfiling this condition.
This condition is equivalent to the later one, stated by Lebesgue, that a bounded function is integrable in Riemann's sense, if and only if the set of points where it is discontinuous can be covered by an infinite sequence of intervals, whose total length is as small as you wish. Since Lebesgue's result is famous, but most people have not read Riemann's paper in detail, this condition is usually attributed, incorrectly in my opinion, to Lebesgue. I.e. Lebesgue's condition is merely an equivalent restatement of Riemann's condition.
When the mesh is small enough, the interval containing the discontinuity will be very tiny, so the area of its rectangle will be less then 7 * mesh. Which for a small enough mesh can be made as small as you like. (Or, if x = 3 is on the boundary between two intervals of the partition, you can see that the areas of the two adjacent rectangles will add up to 7 * mesh + 5 * mesh = 12 * mesh — which once again is as small as you like when the mesh is sufficiently small. So: The interval or intervals containing the discontinuity at x = 3 can be *entirely ignored* since in the limit they will contribute nothing to the integral.
Which means that the integral is the same as the integral of f(x) = 5 from x = 0 to x = 3, plus the integral of f(x) = 7 from x = 3 to x = 4. Since these are both constant functions, these integrals exist (meaning: their limits exist). And so the original integral exists.
Suggested for: Riemann integrability with a discontinuity
- Last Post
- Last Post
- Last Post
- Last Post
- Last Post
- Last Post
- Last Post
- Last Post
- Last Post
- Last Post
- Forums
- Mathematics
- Calculus
Source: https://www.physicsforums.com/threads/riemann-integrability-with-a-discontinuity.984596/
0 Response to "Proof That Continuous Function With Finitely Many Discontinuities is Riemann Integral"
Post a Comment